Multiplication	
Skils and Mental Strategies	Methods
Mental Strategies Consolidate previous years. Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=$ 5; $(20-5) \times 3=45$ They should be encouraged to choose from a range of strategies to solve problems mentally: - Partitioning using $\times 10, \times 20$ etc. - Doubling to solve $x 2, x 4, x 8$ - Recall of times tables - Use of commutativity of multiplication If children know the times table facts to 12×12, can they use this to recite other times tables (e.g. the 13 times tables or the 24 times table). Generalisations Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as BODMAS, or could be encouraged to design their own ways of remembering. Understanding the use of multiplication to support conversions between units of measurement. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?	Continue with a range of equations as in Year 5 but with appropriate numbers. Also include equations with missing digits. Mental methods Identify common factors and multiples of given numbers. Solve practical problems where children need to scale up. Relate to known number facts. Written methods Continue to refine and deepen understanding of written methods including fluency for using long multiplication. Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. $\begin{array}{r} 231 \\ 1342 \\ \times \quad 18 \\ \hline 10736 \\ 13420 \\ \hline 24156 \\ \hline 1 \end{array}$

Multiplication
 Year 5

Skills and Mental Strategies

Methods

Mental Strategies

Children should continue to count regularly, on and back, now including steps of powers of 10 .
Multiply by $10,100,1000$, including decimals.
The number line should continue to be used as an important image to
support thinking, and the use of informal jottings should be encouraged.
They should be encouraged to choose from a range of strategies to solve problems mentally:

- Partitioning using $\times 10, \times 20$ etc.
- Doubling to solve $\times 2, \times 4, \times 8$
- Recall of times tables
- Use of commutativity of multiplication

If children know the times table facts to 12×12, can they use this to recite other times tables (e.g. the 13 times tables or the 24 times table).

Generalisation

Relate arrays to an understanding of square numbers and making cubes to show cube numbers.
Understand that the use of scaling by multiples of 10 can be used to convert between units of measure (e.g. metres to kilometres means to times by 1000).

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
How do you know this is a prime number?

Continue with a range of equations as in Year 4 but with numbers up to 4 digits by a one or two digit number. Also include equations with missing digits.

Mental methods

X by 10, 100, 1000 using moving digits ITP.
Use practical resources and jottings to explore equivalent statements (e.g. $4 \times 35=2 \times 2 \times 35$).

Recall of prime numbers up 19 and identify prime numbers up to 100 (with reasoning).
Solve practical problems where children need to scale up. Relate to known number facts.
Identify factor pairs for numbers.

Written methods (progressing to ThHTU x TU)

Long multiplication using place value counters.
Children to explore how the grid method supports an understanding of long multiplication (for ThHTU x TU).

70000

x	1000	800	20	3
70	70000	56000	1400	210
2	2000	1600	40	6

1823
$\times \quad 72$
6
40
1600
2000
210
1400
56000

Multiplication
 Year 2

Skills and Mental Strategies

Methods

Mental Strategies

Children should count regularly, on and back, in steps of 2, 3, 5 and 10.

Number lines should continue to be an important image to support thinking, for example

Children should practise times table facts (2's,3's,5's \& 10's)
$2 \times 1=$
$2 \times 2=$
$2 \times 3=$
Use a clock face to support understanding of counting in 5 s .
Use money to support counting in $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 20 \mathrm{~s}, 50 \mathrm{~s}$.

Generalisation

Commutative law shown on array (video).
Repeated addition can be shown mentally on a number line.
Inverse relationship between multiplication and division. Use an array to explore how numbers can be organised into groups.

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Express multiplication as a number sentence using x.
Use understanding of the inverse and practical resources to solve missing number problems.
$7 \times 2=\square$
$\square=2 \times 7$
$7 \times \square=14$
$14=\square \times 7$
$\square x 2=14$
$14=2 \times \square$
$\square \mathrm{x} \bigcirc=14$
$14=\square \mathrm{x} \bigcirc$

Develop understanding of multiplication using array and number lines (see Year 1). Include multiplications not in the 2, 5 or 10 times tables. Begin to develop understanding of multiplication as scaling (3 times bigger/taller)

$$
4 \times 3=12
$$

Double numbers up to $10+10$
(Link with understanding scaling).
Use known doubles to work out double TU numbers.
(double $15=$ double $10+$ double 5).

Towards written methods

Use jottings to develop an understanding of doubling two digit numbers.

Multiplication
 Year 1

Skills and Mental Strategies

Methods

Mental Strategies

Children should experience regular counting on and back from different numbers in 1s and in multiples of 2,5 and 10.

Children should memorise and reason with numbers in 2, 5 and 10 times tables.
They should see ways to represent odd and even numbers. This will help them to understand the pattern in numbers.

Children should begin to understand multiplication as scaling in terms of double and half. (E.g. that tower of cubes is double the height of the other tower).

Generalisations

Understand 6 can be arranged as $3+3$ or $2+2+2$
Understand that when counting in twos, the numbers are always even.

Some Key Questions

Why is an even number an even number?
What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
Understand multiplication is related to doubling and combining groups of the same size (repeated addition).

Washing line, and other practical resources for counting: concrete objects, Numicon, bundles of straws, bead strings, etc.


```
5+5+5+5+5+5=30
5\times6=30
5mutiplied by 6
5 multiplied by 6
6 groups of 5
```

Problem solve with concrete objects (including money and measures.

Use cuissenaire and bar method to develop the vocabulary relating to 'times' -
Pick up five, 4 times.
Use arrays to understand multiplication can be done in any order (commutative).

