This table shows the height a rocket reached between 0 and 60 seconds.

Create a line graph to represent the information.

Time (seconds)	Height (metres)
0	0
10	8
20	15
30	25
40	37
50	50
60	70

The table below shows the population in the UK and Australia from 1990 to 2015.

	1990	1995	2000
UK	$57,200,000$	$58,000,000$	$58,900,000$
Australia	$17,000,000$	$18,000,000$	$19,000,000$
	2005	2010	2015
UK	$60,300,000$	$63,300,000$	$65,400,000$
Australia	$20,200,000$	$22,100,000$	$23,800,000$

Create one line graph to represent the population in both countries. Create three questions to ask your friend about your completed graph.

This graph shows the distance a car travelled.

Rosie and Jack were asked to complete the graph to show the car had stopped. Here are their completed graphs.

Rosie:

Jack:

Who has completed the graph correctly?
Explain how you know.

ANSWERS

Rosie has completed the graph correctly. The car has still travelled 15 miles in total, then stopped for 15 minutes before carrying on.

This table shows the distance a lorry travelled during the day.

Time	Distance in miles
7.00 a.m.	10
8.00 a.m.	28
9.00 a.m.	42
10.00 a.m.	58
11.00 a.m.	70
12.00 a.m.	95
1.00 p.m.	95
2.00 p.m.	118

Create a line graph to represent the information, where the divisions along the x-axis are every two hours.
Create a second line graph where the divisions along the x-axis are every hour.
Compare your graphs. Which graph is more accurate?
Would a graph with divisions at each half hour be even more accurate?

